
Useless Notes #1: Fun with Orbifolds and the

Barnes-Wall Lattice.

1 Pure-ish 3D Gravity?

Every known example (that I know) of AdS/CFT has a compact dimension on the same

order as the AdS scale. This seems rather annoying. In particular, in AdS3/CFT2, this

corresponds to the presence of a lot of primaries of weight O(1). Therefore, it seems like a

good exercise to attempt to kill as many of the low weight primaries as possible. The potential

for making sure that the compact dimension is of order O(1) in size is the work on extremal

CFTs, but this seems too hard - one could in principle imagine finding a family of CFTs

whose first non-identity primary is of weight log(c): then the size of the compact dimension

and whatever stringy effects may be in play would still be rather large, but eventually a scale

separation would develop.

One obvious approach to try is orbifolding Narain lattice models by translations and

rotations. Unfortunately, this won’t get all the way down to the Virasoro algebra, because

of the rotationally invariant combinations of the oscillator modes will never be killed. These

states do seem to have some sort of nice large-N type behaviour, though. For instance, the

partition function can be calculated without too much difficulty: In the chiral case, one has

Z(q) =
∏
i≤j

1

1− qi+j
(1)

and in the non-chiral case

Z(q, q) =
∏
i≤j

1

|1− qi+j|2
∏
i,j

1

1− qiqj
(2)

It’s possible to calculate the large N expansion of the correlation functions of all these states

and it all seems a bit to nice to not have some interpretation on the gravity side, but since

I haven’t managed to find any CFT with this as its low-lying spectrum, I’m not going to

bother with its analysis too much.
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2 The Barnes-Wall lattice and the Clifford Group

The closest that I have managed to get to that optimal low-lying spectrum is using something

called the Barnes-Wall lattices. Since I have, in fact, never heard of these things until

Noam Elkies told me about them, I will mainly be drawing from the papers math/0207186,

math/0403480 and math/0001038 for information about them.

The fastest, although not the most explicit, definition of the Barnes-Wall lattices is

to first define the balanced lattice M1 ⊂ R2 consisting of integer linear combinations of

(0, 1), (1, 0), (1/
√
2, 1/

√
2), and (1/

√
2,−1/

√
2). Then the balanced Barnes-Wall lattice is

Mk = M⊗k
1 ⊂ R2k , and the actual Barnes-Wall lattice is Lk = Mk ∩ Q2k . The symmetry

group of the balanced Barnes-Wall lattice Mk is the Clifford group Ck and the symmetry

group of Lk is an index two subgroup of Ck. I haven’t been able to find a name for this

subgroup - call it Dk.

The good behaviour of the Barnes-Wall lattice is that when k ≥ 3 is odd, Lk is even,

unimodular, and has the minimum norm of a non-zero vector equal to 2
k−1
2 . (Note that the

norm of a vector is the square of its length.) Let N = 2k.

It will be necessary to understand the behaviour of the Clifford group decently well in

order to analyze the twist sector, so some analysis will be presented here. An important

subgroup of Ck is the ‘extraspecial 2-group’ E(k) ≃ 21+2k
+ ⊂ O(2k,R) generated by the Pauli

matrices 1 ⊗ · · · ⊗ σx ⊗ · · · ⊗ 1 and 1 ⊗ · · · ⊗ σz ⊗ · · · ⊗ 1. Note that σy does not appear,

only iσy does. E(k) naturally has a representation, call it V ≃ Rk. Inspection reveals that

E(k) ⊂ Lk. Another definition for the Clifford group is as the normalizer of E(k) in O(2k,R).
That is, the Clifford group Ck is the set of orthogonal matrices whose action by conjugation

sends every element of E(k) to another. The centralizer of E(k) turns out to just be the two

matrices ±I2
k
. Therefore, an element of the Clifford group is fixed up to sign by its action

on E(k). In turn, note that E(k)/±I2
k ≃ F2k

2 since the Pauli matrices commute up to sign.

Examining whether each matrix is symmetric or anti-symmetric, which can be determined

from withing E(k) by asking whether the square of the element is ±1, gives a quadratic

form F2k
2 and so the outer autormorphism group of E(k) turns out to be the group called

O+(2k, 2) ⊂ GL(2k,F2). As it turns out that every outer automorphism of E(k) ≃ 21+2k
+

can be achieved by an element of Ck, there is another formulation of the Clifford group as

the semidirect product 21+2k
+ .O+(2k, 2).

2

https://arxiv.org/abs/math/0207186
https://arxiv.org/abs/math/0403480
https://arxiv.org/abs/math/0001038


3 The CFT

Since I don’t want to think hard about anomalies, I will only be doing the non-chiral case.

The chiral case should be similar, provide that the orbifold exists. There is a natural CFT

Nk which is the lattice theory consisting of a holomorphic and anti-holomorphic Barnes-Wall

lattice CFT. This has an automorphism group containing Aut(Lk), and so one can construct

the orbifold CFT BWk which is the quotient of Nk by Aut(Lk).

BWk has three types of states, the invariant combinations of the oscillators, the mo-

mentum/winding states, and the twist states. By construction, the momentum/winding

states all have weight O(
√
N). Note that this is very different from the behaviour of e.g. the

symmetric product orbifolds! I will now argue that the twist states have the same behaviour.

3.1 Twist States

Suppose one has some rotation R on Vk. If the eigenvalues of R are eiθi , then the minimal

possible energy of a state twisted by R is
∑

i f(θi), there f is some function that I haven’t

bothered to look up, but which is O(1) whenever θi itself is O(1). Suppose that R ∈ Ck.
Then, there are three cases: R = ±I2k, R ∈ E(k) but R ̸= ±I2

k
, and R /∈ E(k). In the first

case, R is either the identity, in which case it isn’t a twist state at all, or R is the negative of

the identity, in which case the weight is O(N). In the next case, either half of the eigenvalues

are +1 and half are −1, or half of the eigenvalues are +i and the other half −i. In either of

these cases, the ground state weight is also O(N).

It is this final case which is non-trivial. The action on V itself is rather gnarly, but it is

much easier to figure out what is happening in the adjoint actions on the space of matrices

V ∨
k ⊗Vk ≃ Vk⊗Vk. This space is spanned by tensor products of 1, σx, iσy, and σz. Since these

are exactly the elements of E(k), R must act on the matrices by permuting them according

to the non-trivial element of O+(2k, 2) and by the flips of some signs.

By standard linear algebra reasons, an element of GL(2k,F2) cannot fix more than half

of the elements of F2k
2 , so O(N2) of them must be in non-trivial cycles. No matter which

way the signs flip, if you set some O(1) cutoff, e.g. |θi| > π/2, then an O(1) fraction of the

eigenvalues originating from a cycle of any length will be above that cutoff.

Now suppose that the eigenvalues of the action of R on V are θi, and that k << N of

them satisfy |θi| > π/4. Then the eigenvalues of the action of R on V ⊗ V is by eθi−θj .

Therefore, an O(kN) number of eigenvalues of the adjoint action are larger than π/2 in

absolute value, a contradiction. Therefore, an O(N) number of eigenvalues of the action of

R on V must be larger than π/4 and so the weight of the ground state is O(N)
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Therefore, every twist state has energy O(N).

3.2 Large N and Invariants

There is now a pretty nice division of energies here: From energies of order 1 to E ∼
O(

√
N), only the vector-like invariant combinations of the oscillator modes ∂nXµ and ∂

n
Xµ

contribute. At E ∼
√
N , the first momentum/winding states start appearing, continuing in

an increasing plethora until the giant morass of twist states come in at E ∼ N .

3.2.1 E ∼ 1

Even when just considering E(k), the representation V is an irreducible real representation.

Therefore, the only invariant of V ⊗ V is the natural metric. Since −I2k is an element of

E(k) ⊂ Dk, only V 2m can have an invariant tensor. One of the cited papers computes the

symmetric invariants of Ck and shows that they are constant in number for large enough N

and that there are no such nontrivial invariants until Sym8V , at which point there is one

related to the Hamming code.

Since the relevant fields are vector-like instead of adjoint, the ‘single-trace’ states are just

those of the form ∂iXµ∂jXµ, ∂
iXµ∂

j
Xµ, and ∂

i
Xµ∂

j
Xµ. A simple direct calculation shows

that their normalized three-point function is of order 1/
√
N . More on the analysis of the

higher energy states later after I get a better grasp on the number of non-symmetric tensor

invariants.

3.2.2 E ∼
√
N

I haven’t really done any analysis of the regime, but I do get the impression that the momen-

tum modes have a very suspicious resemblance to D-branes. The action of the Clifford group

on the first non-trivial winding modes I think is transitive, and has a stablizer which seems

to be related to Ck−1. Due to the symmetry bringing together multiple bits, the momen-

tum mode seems to be able to do something like absorb some number of loose ∂X indices.

Haven’t thought much about it, but seems analyzable.

3.2.3 E ∼ N

Who knows, man. Here be dragons.
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4 Codes and Codes Galore

4.1 The Upshot and the Lowdown

The low energy behavior of this theory is given by the theory of invariants of Dk. When

the number of legs n is less than or equal to 2k + 2, the invariants of the Clifford group

correspond exactly to the even self-dual codes on n bits. Beyond this, ‘trace relations’ of a

sort start arising and it seems like it is also at O(k) where the first invariants of Dk which

are negative in parity under Ck which start to pop up.

The number of even self-dual codes on n bits, where n is even, is exactly

n
2
−1∑

i=1

(
2i + 1

)
. (3)

This scales as 2
1
2
n2+O(n) and since the mathematicians say that almost all such codes have

trivial automorphism group, the number of symmetric invariants scales the same way. There-

fore, the number of (very-)low lying states grows faster than Hagedorn! This is very much

not pure 3d gravity, but this isn’t the Hagedorn growth of the typical stringy background,

either.

At energies much larger than k but much smaller than N , a quick back-of-the-envelope

calculation of the number of invariants comes out to something like (N)n−k or thereabouts,

which is Hagedorn, so presumably the strings start showing up here.

Meanwhile, there is indeed a very nice factorization of the correlation functions with

a 1/N expansion, where the ‘single-trace’ states are exactly the irreducible codes. The

good behaviour of the 1/N expansion is so good, in fact, that it is blithely unaware of

the mayhem that starts occuring at order k and continues until the total number of tensor

legs starts to compete with N itself. This has got to be the cleanest demonstration I’ve

seen of a phenomenon that Dan Jafferis once told me about where a perturbative canonical

quantization of the interior of a black hole actually comes out to too high an entropy, so

it must be that the subleading corrections to the inner product must cause a large number

of null states to appear, cutting down the size of the Hilbert space. This is precisely what

must happen here, and it happens at a point that the peturbation theory seems completely

oblivious to!

I am apparently at a loss for words as to how to describe the inexplicably beautiful and

deep structure of this theory.
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4.2 The Counting of the Invariants

The vector space Vk ≃ RN can be represented by linear combinations of generators µν , where

ν ∈ Fk
2. The Clifford group is generated by the following three types of actions.

1. diag (−1)q(ν)+a, where q ranges over all 0, 1-valued quadratic forms on Fk
2 and a ∈ F2.

Without loss of generator-ness, one can restrict to q = eiej for i ≤ j.

2. AGL(k, 2), the affine general linear group on Fk
2, sending µν to µAν+µ.

3. And finally, the matrix h⊗ I2⊗ . . .⊗ I2, where h is the Hadamard matrix, 1√
2

(
1 1

1 −1

)
.

Only the third generator has a factor of
√
2. Therefore, the subgroup Dk of Ck is exactly

those elements which have an even number of h’s. As such, invariants of Dk can be split into

those which are of even and odd parity under h.

Now, to consider V ⊗n
k . This vector space is generated by µM , where M is a k×n matrix

of bits. This matrix is originally interpreted as n columns of length k, but for most of the

rest of the analysis, it is more productive as k rows of length n. Due to the presence of −IN
as an element of the automorphism group, all invariants have n even, so I will be assuming

n is even from now on.

The first set of generators leaves each monomial fixed and possibly changes its sign. The

quadratic forms just ensure that each pair of rows is orthogonal, by the typical “multiply

the entries and add” dot product rule. In particular, rows being orthogonal to themselves

imply that they have a even number of elements, and thus have zero dot product with the

all ones vector 1n. Therefore, the span of the rows (adding in 1n for good measure) forms a

self-orthogonal, but not necessarily self-dual, code. (Given a subspace C ⊂ Fn
2 , its orthogonal

complement is C⊥ and consists of all vectors which are orthogonal to all of the elements of

C. A code is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. It seems that generally

self-orthogonal codes are taken to always contain the vector 1n.)

The action of the second set of generators permutes the µM ’s, acting on each M by some

linear recombination of its rows and by potentially adding 1n to arbitrary rows. Let SM be

the span of the rows of M along with 1n. Then, AGL(k, 2) sends M to M ′ if and only SM

and SM ′ agree.

Given a self-orthogonal code C, one can now define µC,k =
∑

M,SM=C µM and

fk(C) =
∑

M,SM⊆C

µM . (4)
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These are both invariants of the ‘parabolic’ subgroup generated by the first two types of

generators. When the dimension of C exceeds k + 1, µC,k vanishes. It is not too hard to

show that µC,k for dim(C) ≤ k + 1 forms a basis of the parabolic invariants and that fk(C)

for dim(C) ≤ k + 1 does too.

The tensor fk(C) factorizes as (f1(C))⊗k (note the opposite tensor decomposition as

initially). Therefore, the Hadamard matrix acts as (h⊗nf1(C))⊗ (f1(C))⊗k−1. Then,

h⊗nf1(C) = h⊗n
∑
c∈C

µc = 2−
n
2

∑
c′∈Fn

2

∑
c∈C

(−1)⟨c,c
′⟩µc′ = 2−r

∑
c′∈C⊥

µc′ , (5)

where r = n/2 − dimC. Therefore, whenever C is self-dual, f(C) is an invariant of the

Clifford group. Some further analysis can show that every invariant of the Clifford group

can be obtained in this way. However, when n ≥ 2k + 4, these invariants are not linearly

independent. There are the additional determinant-like invariants of Dk which are not of

this type. More about these later, once I have had the chance to analyze them.

For now, I will focus on these Clifford invariants, and not worry too much about the trace

relations or the negative parity invariants.

4.3 The Multiplication of the Codes

While there are other ways to count the number of even self-dual codes which allow easy

generalization, here’s a particularly direct one.

Suppose you have a self-dual code C ⊂ Fn
2 . There are two possiblities for the last two

bits: either all four combinations of two bits will appear, or the last two bits will be always

either 00 or 11. (Other possibilites are ruled out by self-duality.)

First consider the latter case, where the last two bits always match. Therefore, (0 · · · 011)
is an element of C⊥ = C. This means that C decomposes as a direct sum C ′ ⊕ δ, where δ is

the trivial self-dual code on two bits, {00, 11}.

Now suppose that all four combinations come up. Each codeword in C can be expressed

as (⃗ab1b2). Let C
′ be the set of a⃗ which appear in a codeword where b1 = b2 and let c⃗ be such

that (c⃗10) ∈ C. C ′ is self-orthogonal, since the b’s do not contribute to the inner product and

if a⃗ is orthogonal to C ′, then either (⃗a00) (if a⃗ · c⃗ = 0) or (⃗a11) (otherwise) will be orthogonal

to C, so a must be in C ′, so C ′ is self-dual as well. Given a self-dual C ′, then given an odd

c⃗, the b’s can be determined by taking a dot product with c⃗, recovering C. There are 2n−2

choices for c⃗, which is defined up to 2n/2−1 shifts, so there wn/2−1 choices for C given C ′.

Repeatedly iterating these two procedures gives the desired formula.
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Placing two tensors next to each other, giving fk(C) ⊗ fk(C
′), gives fk on the direct

sum code: fk(C)⊗ fk(C
′) = fk(C ⊕C ′). Therefore, calculating tensor contractions of codes

reduces to contracting pairs of indices in a single code. In turn, this process is completely

unaffected by the presence of the k factors, so can examine f1(C). Some staring at the

formula f1(C) =
∑

c∈C µc reveals that if the two bits corresponding to the contraction are

always the same in C, then the contraction is 2f1(C
′), whereas if all four bit combinations

appear, one gets f1(C
′), where C ′ is defined as in the construction in the previous paragraph.

When all the indices are contracted, one is left with(
2dim(C∩δ⊕n/2)

)k

= Ndim(C∩δ⊕n/2). (6)

The inner product of a tensor with itself gives NdimC = Nn/2, so the normalization factor is√
N

−n/2
.

When evaluating correlation functions, the normal ordering of the operators means that

the tensor contractions only run between separate blocks of operators. In particular, the

contractions never run from an irreducible self-dual code to itself.

Consider adding in each block one at a time. At a intermediate stage of the process, the

no free legs will possess a code Co and the new block will have ni with the code Ci. Then, nc

of the legs will be contracted together. There is a map Co ⊕ Ci → Fnc
2 consisting of taking

the difference (which equals the sum) of the ends of the contraction legs. This comes out to

the number of constraints imposed by contraction, so this new block adds

ni − dim im(Co ⊕ Ci → Fnc
2 ). (7)

to the dimension of the space of consistent configurations.

One has a chain of inclusions of subspaces of Fnc
2 (stripping out various 0 direct sum-

mands):

(Co ⊕ Ci) ∩ (0⊕ δnc
i ⊕ 0) ⊆ Co ∩ (0⊕ Fnc

2 ) ⊆ im(Co ⊕ 0 → Fnc
2 ) ⊆ im(Co ⊕ Ci → Fnc

2 ). (8)

It turns out that the first and last spaces are dual to each other, so let dim((Co ⊕Ci)∩ (0⊕
δni
i ⊕ 0)) = n/2− ri and let dim im(Co ⊕ Ci → Fnc

2 ) = n/2 + ri. (ri can be a half-integer.)

The number r can only vanish when the first and last sub-space coincide. This implies

that Co∩(0⊕Fnc
2 ) must have dimension nc/2 and so Co and Ci must split as direct summands

for the contracted and non-contracted parts, and the contracted parts must coincide.

The final normalized tensor contraction evaluates to
√
N

−ntot/2
Nntot/2−

∑
i ri = N−

∑
i ri . (9)

All ri’s can only vanish when all the tensor contractions match the irreducible codes together,

giving the desired factorization of the correlation function.
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5 The Siren Allure of Tensor Networks

Before heading on to establishing the correct tree level scaling behavior of the tensor net-

works, I will provide here an extended digression on the possibility of creating a dynamical

tensor network system out of this kind of theory. Nothing in this whole discussion is actu-

ally specific to the Barnes-Wall orbifold theory, but will apply to any orbifold of a lattice by

rotations.

In order to have a chance of getting something that resembles a tensor network, we need

a discretized theory. Luckily, the free boson theory is very easy to discretize: just have a

series of beads with position xi and Hamiltonian
∑

i
1
2a

(
pµi pi,µ + (xµ

i − xµ
i−1)

2
)
. Orbifolding

the discrete free boson is similarly trivial: attach elements of the orbifold group (the lattice

translations and the orbifolded rotations) to the spaces between neighboring sites and then

demand that the wavefunction is invariant under gauge symmetry.

The ground state has zero winding and no twist, so yet again it is incredibly easy to

describe: gauge fix away the gauge connection, and then

Ψ ∝ exp(−1

2

∑
i,j

Mijx
i,µxj

µ), (10)

where M is some symmetric matrix whose DFT is exactly soluble. In particular, xTMx is

invariant under translating every xµ
i uniformly.

This ground state is a sort of squeezed state. The most natural way to try and get another

squeezed state out of this is to glue a large collection of squeezed states together. Then, on

a graph with V vertices, E edges, and N external legs, once can make a wave-function as

Ψ(x1, . . . , xN) ∝
∫ ∏

e∈E

dxe

∏
v∈V

Ψv(x1, . . . , xnv) (11)

Note that at this point, all the copies of the free boson don’t interact with each other, so

one might as well just consider a single boson.

If one considers translation invariant squeezed states of the form exp(−1
2
xTMx), the

invariance under shifting all the positions and the constraint that the momenta must sum

to zero means that the whole problem is equivalent to that of resistor networks, with the

matrix M corresponding to the current response to a given voltage. Since in the continuum

limit, the ground state comes from a disk of uniform conductance, the resistor network in the

discrete case should be some dense, planar, network of resistors. Once the network becomes

sufficiently dense, there should be enough degrees of freedom to make the output response

function line up.
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The Hamiltonian, by definition, acts on the boundary. But it should be possible to make

an infinitesimal redefinition of the internal variables so that the internal tensors are left

unchanged. Then, when applying this to excited tensors, this should give some reasonably

local notion of bulk time evolution. The locality is due to this corresponding to deformation

of contours of the stress tensor. Ensuring approximate unitarity of the bulk evolution might

be a bit more complicated, though.

It is amusing to note the eerie similarity between the nature of the contractions of the

squeezed states and that of the Clifford invariants: the Clifford invariants are almost like

fermionic versions of the squeezed states.

The Hamiltonian acting on these tensors produces things that mixes position and mo-

mentum, so it is necessary to consider more general squeezed states. It is, however, possible

to reduce this entire problem down to classical symplectic geometry. In order to get to phase

space, consider the density matrix corresponding to the state. From this can be produced

the Wigner quasiprobability distribution by

W (x, p) =
1

πN

∫
dNxad

NxbΨ
∗(xa)Ψ(xb)δ

N(2x− (xa + xb))e
ip·(xa−xb). (12)

The squeezed nature of the state means that

W (v) ∝ e−1/2vTMv, (13)

where v is the combined phase space coordinate containing both x and p. The condition on

M from being a pure state implies that it comes from a Kähler structure on the symplectic

space.

Contractions act as a sort of symplectic reduction: adding the constraints that the dif-

ference between the positions and sum of the momenta must vanish and then extremizing

over the values of the intermediate position and momentum. There is a bit of funny business

in this case since there is an invariance with respect to translations which gives a constraint

on total momentum. This can be dealt with by a symplectic reduction with respect to this

translation.

In the exp(−1/2xTMx) type squeezed state, for real M , there is no mixing between

x and p. The quasiprobability distibution comes out to something with a M on x’s and

M−1 on p’s. In the case of planar resistor networks, the behavior of the inverse comes from

noting that noting that if one considers the difference of voltage between neighboring nodes

and the currents along an edge, there is a constraint for each vertex that the sum of the

currents into the vertex must vanish and a constraint for each face that the current around

the face must vanish. Therefore, rotating each edge gives a dual voltage on the dual graph

whose differences is the current and a dual current which is the difference of voltages. The
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resistances which result are the inverses of the resistances of each edge of the original graph.

This gives the inverse matrix’s system.

If one re-introduces the orbifolding into the free boson theory, then the tensors become

equipped with the gauge connection and must be gauge-invariant. The gauge-invariant

condition in particular restricts the allowed low-energy tensors to something manageable,

unlike the un-orbifolded case.

From the above sort of discussion, it seems like that incomplete OPE closed sectors of

theories can be represented by tensor networks with restrictions on the allowed tensors - it

is only when the tensors are loosened to be anything in the relevant gauge-invariant Hilbert

space that the boundary theory has to correspond to an actually local field theory.

Anyways, that’s enough about that.

6 Recovering the Tree Level

Näıvely, the expansion of the connected correlation into tree level and sub-leading corrections

is broken: the contraction of the Hamming spider with four ‘jumpers’ evaluates to N−1,

instead of the expected N− 3
2 of a five-point function. This is due to the projector from the

self-dual codes basis to the orthogonal complement of the multi-trace states has sub-leading

in N corrections. Actually computing these projected invariants is a bit annoying. For

example, I’m getting a formula with a cubic in N in the denominator for the Hamming

spider. This complicated behavior is probably due to some sort of demand for poles at the

places where null states show up. However, to ensure that the tree-level expansion remains

well-defined, you only need to go down so many terms: I think up to O(N−(C−1)/2) is enough

for a C-trace correction.

Note that computing the projector is sensitive to the presence of null states, so the

perturbation expansions here probably are sensitive to k, unlike before. I will be taking k

to be larger than the number of insertions at play so that the inner product never deviates

by more than a O(1) factor from the leading order behaviour.

Consider the contraction of nc of the legs of two corrected single-trace tensor T1 with n1

legs and T2 with n2 legs together. Pick a a-trace self-dual code tensor on n1 + n2 − 2nc legs

as a probe to contract against the original contraction. If any trace component of the probe

contracts solely with either T1 or T2, then the result must vanish by the projected-ness of T1

and T2. Therefore, each component must contract with both T1 and T2. Acting in the order

of putting T1, the components of the probe one-by-one, and then T2, gives each component of

the probe contributing r ≥ 1
2
, so the total inner product must be order at most N−a/2. Note

that this argument can break when n is sufficiently large, since the superexponential number
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of states in play can make a large number of sub-leading corrections add up to something

significant. This almost certainly doesn’t happen until n becomes the same order as k, where

there start being trace relation things, but one can take n fixed and k to infinity and throw

out this possibility no matter what the correct threshold is.

Anyways, this shows that the a-trace part of the contraction of T1 and T2 (in the projected

basis) is at most orderN−a/2. Suppose that one already knows that the connected contraction

of w irreducible tensors goes as at most N−(w−2)/2 for w smaller than the actual number of

tensors we are interested in. Then, take two connected tensors and expand their contraction.

In the worst case, the a-trace part of the contraction can break the graph into a pieces. Then,

the contribution can go by at most N−b, where

b =
a

2
+

a∑
i=1

wi − 2

2
=

a

2
+

w + a− 2

2
− a =

w − 2

2
. (14)

Since we have already handled the two and three-point case, we are done.
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